A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation.

نویسندگان

  • Howard C Hang
  • Chong Yu
  • Darryl L Kato
  • Carolyn R Bertozzi
چکیده

Mucin-type O-linked glycoproteins are involved in a variety of biological interactions in higher eukaryotes. The biosynthesis of these glycoproteins is initiated by a family of polypeptide N-acetyl-alpha-galactosaminyltransferases (ppGalNAcTs) that modify proteins in the secretory pathway. The lack of a defined consensus sequence for the ppGalNAcTs makes the prediction of mucin-type O-linked glycosylation difficult based on primary sequence alone. Herein we present a method for labeling mucin-type O-linked glycoproteins with a unique chemical tag, the azide, which permits their selective covalent modification from complex cell lysates. From a panel of synthetic derivatives, we identified an azido GalNAc analog (N-azidoacetylgalactosamine, GalNAz) that is metabolized by numerous cell types and installed on mucin-type O-linked glycoproteins by the ppGalNAcTs. The azide serves as a bioorthogonal chemical handle for selective modification with biochemical or biophysical probes using the Staudinger ligation. The approach was validated by labeling a recombinant glycoprotein that is known to possess O-linked glycans with GalNAz. In addition, GalNAz efficiently labeled mucin-type O-linked glycoproteins expressed at endogenous levels. The ability to label mucin-type O-linked glycoproteins with chemical tags should facilitate their identification by proteomic strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing mucin-type O-linked glycosylation in living animals.

Changes in O-linked protein glycosylation are known to correlate with disease states but are difficult to monitor in a physiological setting because of a lack of experimental tools. Here, we report a technique for rapid profiling of O-linked glycoproteins in living animals by metabolic labeling with N-azidoacetylgalactosamine (GalNAz) followed by Staudinger ligation with phosphine probes. After...

متن کامل

Mucin glycosylation and sulphation in airway epithelial cells is not influenced by cystic fibrosis transmembrane conductance regulator expression.

Abnormalities in mucus properties and clearance make a major contribution to the pathology of cystic fibrosis (CF). Our aim was to test the hypothesis that the defects in CF mucus are a direct result of mutations in the CF transmembrane conductance regulator (CFTR) protein. We evaluated a single mucin molecule MUC1F/5ACTR that carries tandem repeat sequence from MUC5AC, a major secreted airway ...

متن کامل

CFTR expression does not influence glycosylation of an epitope-tagged MUC1 mucin in colon carcinoma cell lines.

The cause of the mucus clearance problems associated with cystic fibrosis remains poorly understood though it has been suggested that mucin hypersecretion, dehydration of mucins, and biochemical abnormalities in the glycosylation of mucins may be responsible. Since the biochemical and biophysical properties of a mucin are dependent on O-glycosylation, our aim was to evaluate the O-glycosylation...

متن کامل

A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation.

Enzymatic glycosylation of proteins involves the addition of a monosaccharide or, in the case of N-linked glycosylation of asparagine, a preformed oligosaccharide to an amino acid in a given protein. The initial step of protein glycosylation is an important event in the formation of a given glycopeptide linkage (glycoconjugate type), which involves essential recognition events between the prote...

متن کامل

Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation

The O-linked oligosaccharides of mucin-type glycoproteins contain N-acetyl-D-galactosamine (GalNAc) that is not found in N-linked glycoproteins. Because Helix pomatia lectin interacts with terminal GalNAc, we used this lectin, bound to particles of colloidal gold, to localize such sugar residues in subcellular compartments of intestinal goblet cells. When thin sections of low temperature Lowicr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 25  شماره 

صفحات  -

تاریخ انتشار 2003